
Lucas Rayan Guerra

Hardening de
Sistemas Linux

O que é, quais são os padrões e como
proteger seus sistemas Linux



Introdução
Em um cenário de ameaças cibernéticas em constante evolução, a
segurança de sistemas operacionais tornou-se um pilar
fundamental para a resiliência de qualquer organização. O
hardening, ou endurecimento de sistemas, é o processo de
configurar um sistema para reduzir sua superfície de ataque,
eliminando vulnerabilidades e restringindo privilégios. Para
sistemas Linux, que sustentam a vasta maioria da infraestrutura de
nuvem e servidores corporativos, o hardening não é uma opção,
mas uma necessidade crítica.

Esta cartilha técnica foi elaborada para fornecer um guia detalhado
e prático sobre o hardening de sistemas Linux, alinhado com os
mais rigorosos padrões da indústria, como os Benchmarks do
Center for Internet Security (CIS) e os Security Technical
Implementation Guides (STIGs) da DISA. Abordaremos desde a
segurança do kernel até a configuração de firewalls de host,
auditoria e criptografia, oferecendo um roteiro completo para
transformar uma instalação padrão do Linux em uma fortaleza
digital.

O Que é Hardening e Por Que é Essencial?
O hardening de sistemas é um conjunto de práticas e tecnologias
para proteger um sistema contra ataques, minimizando sua
superfície de ataque. Uma superfície de ataque é o conjunto de
todos os pontos (vetores de ataque) onde um invasor pode tentar
entrar ou extrair dados de um ambiente. Quanto menor a
superfície de ataque, mais seguro é o sistema.

1

O Problema da Configuração Padrão

A maioria das distribuições Linux é otimizada para facilidade de uso
e compatibilidade, não para segurança máxima. Uma instalação
padrão geralmente inclui:

Serviços desnecessários: Serviços de rede que não são
essenciais para a função do servidor, mas que abrem portas e
criam vetores de ataque.



Pilares do Hardening de Linux

Pilar Descrição Técnica Impacto na Segurança

Funcionalidade
Mínima

Remover todos os pacotes,
serviços e protocolos que não são

estritamente necessários para a
função do servidor.

Reduz drasticamente a
superfície de ataque,

eliminando vulnerabilidades
latentes e simplificando a

gestão de patches.

Princípio do
Menor

Privilégio

Conceder a cada usuário,
processo e aplicação apenas as

permissões mínimas necessárias
para realizar sua função.

Limita o dano que um
atacante pode causar se uma

conta ou processo for
comprometido.

Defesa em
Profundidade

Implementar múltiplos controles
de segurança em diferentes

camadas do sistema (kernel, rede,
aplicação, dados).

Garante que a falha de um
único controle não resulte em

um comprometimento total
do sistema.

Monitoramento
Contínuo

Auditar e registrar todas as
atividades relevantes do sistema

para detectar e responder a
atividades suspeitas.

Fornece a visibilidade
necessária para identificar
ataques em andamento e
realizar análises forenses.

Permissões permissivas: Contas de usuário e arquivos com
permissões mais amplas do que o necessário.

Protocolos obsoletos: Protocolos de criptografia fracos ou
inseguros que são mantidos por razões de compatibilidade.

2

Os Pilares do Hardening de Linux

Uma estratégia de hardening eficaz se baseia em múltiplos
controles de segurança sobrepostos, um conceito conhecido como
defesa em profundidade. Se uma camada de defesa falhar, outras
estarão em vigor para impedir o avanço do atacante.



3

Padrões Globais e Frameworks de
Conformidade
Para guiar os esforços de hardening, a indústria de segurança
cibernética consolidou padrões técnicos validados por especialistas.
Os dois mais importantes são os Benchmarks do Center for
Internet Security (CIS) e os Security Technical Implementation
Guides (STIGs) da Defense Information Systems Agency (DISA).

CIS Benchmarks

Os CIS Benchmarks são guias de configuração de segurança
desenvolvidos através de um processo de consenso global. Eles
oferecem recomendações prescritivas para mais de 25 famílias de
produtos, incluindo as principais distribuições Linux (Ubuntu,
Debian, RHEL).

Nível 1 (Level 1): Configurações de segurança essenciais que
fornecem um benefício claro e têm baixo impacto na
funcionalidade. Recomendado para todos os sistemas.

Nível 2 (Level 2): Configurações para ambientes de alta
segurança, onde a proteção é primordial, mesmo que isso
implique em maior sobrecarga de gerenciamento ou restrições
funcionais.

DISA STIGs

Os STIGs são guias de configuração mandatórios para sistemas do
Departamento de Defesa dos EUA (DoD) e outras agências federais.
Eles são mais rigorosos que os CIS Benchmarks e focam em
ambientes de missão crítica. As vulnerabilidades são categorizadas
por severidade:

CAT I (Categoria I): Risco máximo. Permite acesso imediato ao
sistema ou privilégios de superusuário.

CAT II (Categoria II): Risco médio. Potencial para
escalonamento de privilégios ou acesso não autorizado.



Parâmetro sysctl
Valor

Recomendado Função de Segurança

kernel.randomize_va_space 2

Ativa o ASLR (Address Space
Layout Randomization) completo

para dificultar ataques de
exploração de memória como

buffer overflow.

kernel.kptr_restrict 2

Oculta endereços de ponteiros
do kernel de usuários não

privilegiados, dificultando a
criação de exploits.

net.ipv4.conf.all.rp_filter 1

Ativa a validação de endereço de
origem (anti-spoofing), mitigando

ataques que falsificam o IP de
origem.

4

CAT III (Categoria III): Risco baixo. Exposição de informações
ou falhas operacionais.

Automação da Conformidade com OpenSCAP

Verificar manualmente a conformidade com centenas de controles
é impraticável. O OpenSCAP é uma suíte de ferramentas de código
aberto que automatiza a verificação de conformidade. Ele utiliza o
protocolo SCAP (Security Content Automation Protocol) para
escanear um sistema e compará-lo com as políticas definidas nos
benchmarks CIS ou STIGs, gerando relatórios detalhados de
conformidade e scripts de remediação.

Segurança do Kernel e Parametrização via
sysctl
O kernel é o coração do sistema operacional. Seu endurecimento é
crucial para mitigar ataques de exploração de memória e fortalecer
a pilha de rede. O utilitário sysctl permite modificar parâmetros do
kernel em tempo de execução.



Parâmetro sysctl
Valor

Recomendado Função de Segurança

net.ipv4.conf.all.accept_redirects 0

Recusa mensagens de
redirecionamento ICMP, que

podem ser usadas em ataques de
Man-in-the-Middle.

fs.protected_fifos 2

Impede a criação de FIFOs (pipes
nomeados) em diretórios com

permissões de escrita para todos,
um vetor de ataque comum.

5

Para aplicar essas configurações de forma persistente, crie um
arquivo em /etc/sysctl.d/99-hardening.conf com os parâmetros
desejados e execute sysctl -p.

Políticas de Senha Fortes

Utilize o módulo pam_pwquality.so para impor requisitos de
complexidade de senha. Edite o arquivo
/etc/security/pwquality.conf:

Autenticação Robusta com PAM
O Pluggable Authentication Modules (PAM) é um framework
modular que gerencia a autenticação de usuários e políticas de
sessão. O endurecimento do PAM é essencial para impor políticas
de senhas fortes e mecanismos de bloqueio de contas.

Isso exige senhas de no mínimo 14 caracteres, com pelo menos um
dígito, uma letra maiúscula, uma minúscula e um caractere
especial.



A autenticação por senha sozinha não é mais suficiente.
Implemente MFA:

TOTP (Time-based One-Time Password): Use o módulo
libpam-google-authenticator para exigir um código de um
aplicativo como o Google Authenticator.

FIDO2/U2F: Use o módulo pam_u2f.so para exigir uma chave de
segurança de hardware (como uma YubiKey), oferecendo a
proteção mais forte contra phishing.

Diretiva sshd_config
Valor

Recomendado Objetivo Técnico

PasswordAuthentication no

Desativa a autenticação por senha,
forçando o uso de chaves

criptográficas, que são muito mais
seguras.

6

Bloqueio de Contas

Use o módulo pam_faillock.so para bloquear contas após tentativas
de login falhas. Adicione as seguintes linhas ao início dos arquivos
em /etc/pam.d/ (como system-auth e password-auth):

Isso bloqueará a conta por 15 minutos (900 segundos) após 3
tentativas falhas.

Autenticação Multifator (MFA)

Configuração Segura do Protocolo SSH
O SSH é a principal interface de gerenciamento e um dos serviços
mais atacados. Seu endurecimento é crítico. Edite o arquivo
/etc/ssh/sshd_config:



Diretiva sshd_config
Valor

Recomendado Objetivo Técnico

PermitRootLogin no

Impede o login direto do usuário
root, forçando o uso de sudo e
criando uma trilha de auditoria

clara.

Protocol 2
Força o uso da versão 2 do

protocolo SSH, que é muito mais
segura que a versão 1.

Ciphers, KEXs, MACs (listas restritas)

Restringe os algoritmos
criptográficos a opções modernas e

seguras, como aes256-
gcm@openssh.com e Ed25519.

AllowUsers user1 user2
Restringe o acesso SSH a uma lista
explícita de usuários autorizados.

7

Use Chaves Ed25519: Ao gerar chaves SSH, prefira o algoritmo
Ed25519, que é mais seguro e eficiente que o RSA tradicional:

Controle de Acesso Obrigatório (MAC)
O Controle de Acesso Discricionário (DAC) padrão do Linux permite
que o dono de um arquivo defina suas permissões. Se um processo
for comprometido, ele herda as permissões do usuário. O Controle
de Acesso Obrigatório (MAC) resolve isso, impondo políticas em
nível de kernel que restringem o que cada processo pode fazer,
independentemente do usuário.



Comparação entre o SELinux e o AppArmor

Característica SELinux AppArmor

Modelo Baseado em Rótulos (Inodes)
Baseado em Caminhos

(Paths)

Granularidade Extremamente granular
Mais simples, focado em

aplicações

Complexidade Alta Média

Distribuições RHEL, Fedora, CentOS Ubuntu, Debian, SUSE

SELinux (Security-Enhanced Linux)

Como funciona: Baseado em rótulos. Cada arquivo, processo e
porta de rede tem um contexto de segurança. O kernel bloqueia
qualquer ação não permitida pela política carregada.

Distribuições: Padrão em RHEL, CentOS, Fedora.

Modos:
Enforcing: Bloqueia violações de política.
Permissive: Registra violações, mas não bloqueia (útil para
depuração).
Disabled: Desativado.

8

AppArmor (Application Armor)

Como funciona: Baseado em caminhos de arquivo. Define
perfis que especificam quais arquivos um programa pode ler,
escrever e executar.

Distribuições: Padrão em Ubuntu, Debian, SUSE.

Vantagem: Considerado mais fácil de gerenciar que o SELinux.



9

Firewall de Host com nftables
Um firewall de host é a última linha de defesa da rede. O nftables é
o framework moderno que substitui o antigo iptables.

Exemplo de Ruleset Básico para um Servidor Web
(/etc/nftables.conf):

Este ruleset implementa uma política de "negar por padrão" (policy
drop) e permite explicitamente apenas o tráfego necessário.



10

Auditoria com auditd
O auditd é o subsistema de auditoria do Linux. Ele registra eventos
de segurança com base em regras predefinidas, criando uma trilha
de auditoria detalhada.

Exemplos de Regras de Auditoria (/etc/audit/rules.d/audit.rules):

Use ausearch para pesquisar logs e aureport para gerar relatórios
sumários.

Criptografia de Disco com LUKS e TPM
A criptografia de dados em repouso protege contra o acesso físico
não autorizado ao disco.

LUKS (Linux Unified Key Setup): É o padrão para criptografia
de disco no Linux. Ele cria um container criptografado que pode
ser desbloqueado com uma senha.

TPM (Trusted Platform Module): É um chip de segurança na
placa-mãe que pode armazenar chaves criptográficas de forma
segura. O LUKS pode ser integrado ao TPM para desbloquear o
disco automaticamente na inicialização, mas apenas se o
processo de boot não tiver sido adulterado (verificado pelo
Secure Boot).

Essa combinação (LUKS + TPM + Secure Boot) garante que os dados
permaneçam criptografados e inacessíveis se o disco for roubado
ou se um atacante tentar inicializar um sistema operacional não
autorizado.



11

Conclusão
O hardening de sistemas Linux é uma disciplina essencial que
transforma um sistema operacional de propósito geral em uma
plataforma segura e resiliente. Não é um evento único, mas um
processo contínuo de avaliação, configuração, monitoramento e
automação. Ao adotar uma abordagem de defesa em profundidade
e seguir os padrões da indústria como CIS e STIG, as organizações
podem reduzir drasticamente sua superfície de ataque e proteger
seus ativos mais críticos contra as ameaças cibernéticas de hoje e
de amanhã.



Referências
¹ Center for Internet Security (CIS). (2024). CIS Benchmarks.

² Defense Information Systems Agency (DISA). (2024). Security
Technical Implementation Guides (STIGs).

³ OpenSCAP. (2024). OpenSCAP Security Compliance.

⁴ Red Hat. (2023). Security Hardening Guide for RHEL.

⁵ ArchWiki. (2024). Security.

⁶ Netwrix. (2024). Linux Server Hardening and Security Best
Practices.

⁷ SUSE. (2024). Security and Hardening Guide.

⁸ Ubuntu. (2024). Security for Ubuntu.

12


